Meeting global challenges with regenerative agriculture producing food and energy

  • 1.

    Kline, K. L. et al. Reconciling food security and bioenergy: priorities for action. GCB Bioenergy 9, 557–576 (2017).

    Google Scholar 

  • 2.

    Rosegrant, M. W. & Msangi, S. Consensus and contention in the food-versus-fuel debate. Annu. Rev. Environ. Resour. 39, 271–294 (2014).

    Google Scholar 

  • 3.

    Tomei, J. & Helliwell, R. Food versus fuel? Going beyond biofuels. Land Use Policy 56, 320–326 (2016).

    Google Scholar 

  • 4.

    Valli, L. et al. Greenhouse gas emissions of electricity and biomethane produced using the BiogasdonerightTM system: four case studies from Italy. Biofuel. Bioprod. Biorefin. 11, 847–860 (2017).

    CAS 

    Google Scholar 

  • 5.

    Al Mamun, S., Nasrat, F. & Debi, M. R. Integrated farming system: prospects in Bangladesh. J. Environ. Sci. Nat. Resour. 4, 127–136 (2011).

    Google Scholar 

  • 6.

    Preston, T. R. Future strategies for livestock production in tropical third world countries. Ambio 19, 390–393 (1990).

    Google Scholar 

  • 7.

    Aui, A., Li, W. & Wright, M. M. Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Waste Manage. 89, 154–164 (2019).

    CAS 

    Google Scholar 

  • 8.

    Soliman, N. F. Aquaculture in Egypt Under Changing Climate (Alexandria Research Center for Adaptation to Climate Change, 2017).

  • 9.

    Dale, B. E. et al. BiogasdonerightTM: an innovative new system is commercialized in Italy. Biofuel. Bioprod. Biorefin. 10, 341–345 (2016).

    CAS 

    Google Scholar 

  • 10.

    Koppelmäki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).

    Google Scholar 

  • 11.

    Ahmed, S. et al. Systematic review on effects of bioenergy from edible versus inedible feedstocks on food security. NPJ Sci. Food 5, 9 (2021).

    Google Scholar 

  • 12.

    Arias, P. A. et al. in IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021); https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report_smaller.pdf

  • 13.

    Executive Order on Tackling the Climate Crisis at Home and Abroad (The White House, 2021); https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/

  • 14.

    Biofuture Platform: Kickstarting a Global, Advanced Bioeconomy (Division for Energy Progress, Ministry of Foreign Affairs, Brazil, 2016); http://www.biofutureplatform.org/about

  • 15.

    Food and Agriculture Data (FAO, 2021); https://www.fao.org/faostat/en/#home

  • 16.

    Climate and Earth’s Energy Budget (The Earth Observatory, 2009); https://earthobservatory.nasa.gov/features/EnergyBalance

  • 17.

    Current World Energy Consumption (The World Counts, 2021); https://www.theworldcounts.com/stories/current_world_energy_consumption

  • 18.

    Dale, B. E. & Ong, R. G. Energy, wealth, and human development: why and how biomass pretreatment research must improve. Biotechnol. Prog. 28, 893–898 (2012).

    CAS 

    Google Scholar 

  • 19.

    Lal, R. et al. The carbon sequestration potential of terrestrial ecosystems. J. Soil Water Conserv. 73, 145A–152A (2018).

    Google Scholar 

  • 20.

    Zomer, R. J., Bossio, D. A., Sommer, R. & Verchot, L. V. Global sequestration potential of increased organic carbon in cropland soils. Sci. Rep. 7, 15554 (2017).

    Google Scholar 

  • 21.

    Smil, V. Feeding the World: A Challenge for the Twenty-first Century (MIT Press, 2001).

  • 22.

    Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    CAS 

    Google Scholar 

  • 23.

    Brown, P. W. & Schulte, L. A. Agricultural landscape change (1937–2002) in three townships in Iowa, USA. Landsc. Urban Plan. 10, 202–212 (2011).

    Google Scholar 

  • 24.

    Asbjornsen, H. et al. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 29, 101–125 (2014).

    Google Scholar 

  • 25.

    Cities and Circular Economy for Food (Ellen MacArthur Foundation, 2019); https://www.ellenmacarthurfoundation.org/assets/downloads/insight/CCEFF_Full-report_May-2019_Web.pdf

  • 26.

    Zhu, T., Curtis, J. & Clancy, M. Promoting agricultural biogas and biomethane production: lessons from cross-country studies. Renew. Sustain. Energy Rev. 114, 109332 (2019).

    Google Scholar 

  • 27.

    Basso, B., Jones, J. W., Antle, J., Martinez-Feria, R. A. & Verma, B. Enabling circularity in grain production systems with novel technologies and policy. Agric. Syst. 193, 103244 (2021).

    Google Scholar 

  • 28.

    Corona, B., Shen, L., Reike, D., Carreón, J. R. & Worrell, E. Towards sustainable development through the circular economy—a review and critical assessment on current circularity metrics. Resour. Conserv. Recycl. 151, 104498 (2019).

    Google Scholar 

  • 29.

    Jones, J., Verma, B., Basso, B., Mohtar, R. & Matlock, M. Transforming food and agriculture to circular systems: a perspective for 2050. Resour. Mag. 28, 7–9 (2021).

    Google Scholar 

  • 30.

    Souza, G. M. et al. The role of bioenergy in a climate-changing world. Environ. Dev. 23, 57–64 (2017).

    Google Scholar 

  • 31.

    Gelfand, I. et al. Empirical evidence for the potential climate benefits of decarbonizing light vehicle transport in the US with bioenergy from purpose-grown biomass with and without BECCS. Environ. Sci. Technol. 54, 2961–2974 (2020).

    CAS 

    Google Scholar 

  • 32.

    Pawlak, K. & Kołodziejczak, M. The role of agriculture in ensuring food security in developing countries: considerations in the context of the problem of sustainable food production. Sustainability 12, 5488 (2020).

    Google Scholar 

  • 33.

    Thurow, R. & Kilman, S. Enough: Why the World’s Poorest Starve in an Age of Plenty (PublicAffairs, 2009).

  • 34.

    Godfray, H., Beddington, J., Crute, I. & Haddad, L. (eds) in Food Security: The Challenge of Feeding 9 Billion People Vol. 327, 812–818 (2010).

  • 35.

    Allee, A., Lynd, L. R. & Vaze, V. Cross-national analysis of food security drivers: comparing results based on the Food Insecurity Experience Scale and Global Food Security Index. Food Secur. 13, 1245–1261 (2021).

    Google Scholar 

  • 36.

    Nordhaus, T., Shaiyra, D. & Trembath, A. Energy for Human Development (2016).

  • 37.

    Lee, C.-C. Energy consumption and GDP in developing countries: a cointegrated panel analysis. Energy Econ. 27, 415–427 (2005).

    Google Scholar 

  • 38.

    Aksoy, M. A. & Beghin, J. C. Global Agricultural Trade and Developing Countries (World Bank Publications, 2004).

  • 39.

    Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? Vol. 3 (Bloomsbury, 2016).

  • 40.

    Naylor, R. & Falcon, W. Food security in an era of economic volatility. Popul. Dev. Rev. 36, 693–723 (2010).

    Google Scholar 

  • 41.

    der Ploeg, J. D. et al. The economic potential of agroecology: empirical evidence from Europe. J. Rural Stud. 71, 46–61 (2019).

    Google Scholar 

  • 42.

    Shattuck, A., Schiavoni, C. M. & VanGelder, Z. Translating the politics of food sovereignty: digging into contradictions, uncovering new dimensions. Globalizations 12, 421–433 (2015).

    Google Scholar 

  • 43.

    The State of Food and Agriculture: Social Protection and Agriculture—Breaking the Cycle of Rural Poverty (FAO, 2015); http://www.fao.org/documents/card/en/c/ab825d80-c277-4f12-be11-fb4b384cee35/

  • 44.

    Fairbairn, M. et al. Introduction: new directions in agrarian political economy. J. Peasant Stud. 41, 653–666 (2014).

    Google Scholar 

  • 45.

    Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).

    Google Scholar 

  • 46.

    Yang, Y. & Tilman, D. Soil and root carbon storage is key to climate benefits of bioenergy crops. Biofuel Res. J. 7, 1143–1148 (2020).

    Google Scholar 

  • 47.

    Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. S. & Benfey, P. N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row crop production. Proc. Natl Acad. Sci. USA 118, e2022666118 (2021).

    CAS 

    Google Scholar 

  • 48.

    Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    CAS 

    Google Scholar 

  • 49.

    Brandes, E. et al. Targeted subfield switchgrass integration could improve the farm economy, water quality, and bioenergy feedstock production. GCB Bioenergy 10, 199–212 (2018).

    CAS 

    Google Scholar 

  • 50.

    Basso, B., Shuai, G., Zhang, J. & Robertson, G. P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 9, 5774 (2019).

    Google Scholar 

  • 51.

    Schulte, L. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).

    CAS 

    Google Scholar 

  • 52.

    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    Google Scholar 

  • 53.

    Horton, P., Long, S. P., Smith, P., Banwart, S. A. & Beerling, D. J. Technologies to deliver food and climate security through agriculture. Nat. Plants 7, 250–255 (2021).

    CAS 

    Google Scholar 

  • 54.

    Martinez-Feria, R. & Basso, B. Predicting soil carbon changes in switchgrass grown on marginal lands under climate change and adaptation strategies. GCB Bioenergy 12, 742–755 (2020).

    CAS 

    Google Scholar 

  • 55.

    Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 362, (2018).

  • 56.

    Möller, K. & Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng. Life Sci. 12, 242–257 (2012).

    Google Scholar 

  • 57.

    Holly, M. A., Larson, R. A., Powell, J. M., Ruark, M. D. & Aguirre-Villegas, H. Greenhouse gas and ammonia emissions from digested and separated dairy manure during storage and after land application. Agric. Ecosyst. Environ. 239, 410–419 (2017).

    CAS 

    Google Scholar 

  • 58.

    Domingo, N. G. G. et al. Air quality-related health damages of food. Proc. Natl Acad. Sci. USA 118, (2021).

  • 59.

    Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (NASEM, 2019); https://doi.org/10.17226/25259

  • 60.

    Global Methane Assessment: Benefits and Costs of Mitigating Methane Emissions (UNEP, 2021).

  • 61.

    Liebman, M. & Schulte, L. A. Enhancing agroecosystem performance and resilience through increased diversification of landscapes and cropping systems. Elementa 3, 41 (2015).

    Google Scholar 

  • 62.

    Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).

    Google Scholar 

  • 63.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    CAS 

    Google Scholar 

  • 64.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  • 65.

    De Schutter, O., Mattei, U., Vivero-Pol, J. L. & Ferrando, T. in Routledge Handbook of Food as a Commons (eds Vivero-Pol, J. L. et al.) Ch. 24, 373–395 (Taylor & Francis, 2018).

  • Comments are closed.